skip to main content


Search for: All records

Creators/Authors contains: "Baug, Tapas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract G10.21-0.31 is a 70 μ m dark high-mass starless core ( M > 300 M ⊙ within r < 0.15 pc) identified in the Spitzer, Herschel, and APEX continuum surveys, and is believed to harbor the initial stages of high-mass star formation. We present Atacama Large Millimeter/submillimeter Array (ALMA) and Submillimeter Array observations to resolve the internal structure of this promising high-mass starless core. Sensitive high-resolution ALMA 1.3 mm dust continuum emission reveals three cores of mass ranging within 11–18 M ⊙ , characterized by a turbulent fragmentation. Cores 1, 2, and 3 represent a coherent evolution of three different stages, characterized by outflows (CO and SiO), gas temperature (H 2 CO), and deuteration (N 2 D + /N 2 H + ). We confirm the potential for formation of high-mass stars in G10.21 and explore the evolution path of high-mass star formation. Yet, no high-mass prestellar core is present in G10.21. This suggests a dynamical star formation where cores grow in mass over time. 
    more » « less
  2. ABSTRACT

    The Lynds’ Dark Nebula (LDN) 1615/1616 and CB 28 (hereafter L1616) together form a cometary globule located at an angular distance of about 8° west of the Orion OB1 association, aligned roughly along the east–west direction, and showing a distinct head–tail structure. The presence of massive stars in the Orion belt has been considered to be responsible for the radiation-driven implosion mode of star formation in L1616. Based on the latest Gaia Early Data Release 3 (EDR3) measurements of the previously known young stellar objects (YSOs) associated with L1616, we find the distance to this cloud to be 384 ± 5 pc. We present optical polarimetry towards L1616 that maps the plane-of-sky component of the ambient magnetic field (BPOS) geometry. Based on the proper motion of the YSOs associated with L1616, we investigate their plane-of-sky motion relative to the exciting star ϵ Ori. Using the Gaia EDR3 measurements of the distances and proper motions of the YSOs, we find two additional sources comoving with the known YSOs. One comoving source is HD 33056, a B9 star, and the other might be a young pre-main-sequence star not reported in previous studies. The mean direction of BPOS is found to follow the cloud structure. This could be the effect of dragging of the magnetic field lines by the impact of the ionizing radiation from ϵ Ori. Based on the pressure exerted on L1616, and the ages of the associated YSOs, we show that it could possibly be the main source of ionization in L1616, and thus the star formation in it.

     
    more » « less
  3. ABSTRACT

    Investigating the physical and chemical structure of massive star-forming regions is critical for understanding the formation and early evolution of massive stars. We performed a detailed line survey toward six dense cores, named MM1, MM4, MM6, MM7, MM8, and MM11, in the G9.62+0.19 star-forming region resolved in Atacama Large Millimeter/submillimeter Array (ALMA) band 3 observations. Toward these cores, about 172 transitions have been identified and attributed to 16 species, including organic oxygen-, nitrogen-, and sulphur-bearing molecules and their isotopologues. Four dense cores, MM7, MM8, MM4, and MM11, are line-rich sources. Modelling of these spectral lines reveals that the rotational temperature lies in the range 72–115, 100–163, 102–204, and 84–123 K for MM7, MM8, MM4, and MM11, respectively. The molecular column densities are 1.6 × 1015–9.2 × 1017 cm−2 toward the four cores. The cores MM8 and MM4 show a chemical difference between oxygen- and nitrogen-bearing species, i.e. MM4 is rich in oxygen-bearing molecules, while nitrogen-bearing molecules, especially vibrationally excited HC3N lines, are mainly observed in MM8. The distinct initial temperatures at the accretion phase may lead to this N/O differentiation. Through analysing column densities and spatial distributions of O-bearing complex organic molecules (COMs), we found that C2H5OH and CH3OCH3 might have a common precursor, CH3OH. CH3OCHO and CH3OCH3 are likely chemically linked. In addition, the observed variation in HC3N and HC5N emission may indicate their different formation mechanisms in hot and cold regions.

     
    more » « less
  4. ABSTRACT

    We investigate the presence of hub-filament systems in a large sample of 146 active proto-clusters, using H13CO+ J = 1-0 molecular line data obtained from the ATOMS survey. We find that filaments are ubiquitous in proto-clusters, and hub-filament systems are very common from dense core scales (∼0.1 pc) to clump/cloud scales (∼1–10 pc). The proportion of proto-clusters containing hub-filament systems decreases with increasing dust temperature (Td) and luminosity-to-mass ratios (L/M) of clumps, indicating that stellar feedback from H ii regions gradually destroys the hub-filament systems as proto-clusters evolve. Clear velocity gradients are seen along the longest filaments with a mean velocity gradient of 8.71 km s−1 pc−1 and a median velocity gradient of 5.54 km s−1 pc−1. We find that velocity gradients are small for filament lengths larger than ∼1 pc, probably hinting at the existence of inertial inflows, although we cannot determine whether the latter are driven by large-scale turbulence or large-scale gravitational contraction. In contrast, velocity gradients below ∼1 pc dramatically increase as filament lengths decrease, indicating that the gravity of the hubs or cores starts to dominate gas infall at small scales. We suggest that self-similar hub-filament systems and filamentary accretion at all scales may play a key role in high-mass star formation.

     
    more » « less
  5. ABSTRACT The ATOMS, standing for ALMA Three-millimeter Observations of Massive Star-forming regions, survey has observed 146 active star-forming regions with ALMA band 3, aiming to systematically investigate the spatial distribution of various dense gas tracers in a large sample of Galactic massive clumps, to study the roles of stellar feedback in star formation, and to characterize filamentary structures inside massive clumps. In this work, the observations, data analysis, and example science of the ATOMS survey are presented, using a case study for the G9.62+0.19 complex. Toward this source, some transitions, commonly assumed to trace dense gas, including CS J = 2−1, HCO+J = 1−0, and HCN J = 1−0, are found to show extended gas emission in low-density regions within the clump; less than 25 per cent of their emission is from dense cores. SO, CH3OH, H13CN, and HC3N show similar morphologies in their spatial distributions and reveal well the dense cores. Widespread narrow SiO emission is present (over ∼1 pc), which may be caused by slow shocks from large–scale colliding flows or H ii regions. Stellar feedback from an expanding H ii region has greatly reshaped the natal clump, significantly changed the spatial distribution of gas, and may also account for the sequential high-mass star formation in the G9.62+0.19 complex. The ATOMS survey data can be jointly analysed with other survey data, e.g. MALT90, Orion B, EMPIRE, ALMA_IMF, and ALMAGAL, to deepen our understandings of ‘dense gas’ star formation scaling relations and massive protocluster formation. 
    more » « less